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Hemodynamic modeling: 

 

• Local models 

 

• Global hemodynamic 

 

• Multi-scale  modeling 

 

 

 



Local models 

Aneurysm Stenosis Heart 

2D-3D simulation in complex domain with respect to elastic 

properties, rheology of blood, etc., on the base of Navier-Stokes 

equations. 
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Global model CVSS 

CVSS - Cardio-Vascular Simulating System-  

project and software 
 

The model is aimed to carry out estimation 

of hydrodynamic blood flow (velocity, 

pressure, cross-section) along the graph, 

which is physiologically adequate to human 

cardiovascular system, and to represent the 

main characteristics of blood circulation 

system . 

 

•Modeling of functioning of the circulatory system and 

its regulation.  

•Simulation and investigation of CVS diseases and 

their treatments. 

• Modeling the influence of various organs on the 

functioning of CVS. 

•Modeling of circulatory system influence of the 

functioning of various organs.  

•Simulation of transfer by the circulatory system of 

various substances (gases, enzymes, drugs and so 

on) and their influens on different organs. 

•Modeling the influence of CVS topology changes (as a 

result of surgery, injuries, etc.)  

•Etc. 

 

Applications 



Global Quazi 1D Hemodynamic 

Global Quazi 1D Mass Transfer  

Analytical  analysis 

Numerical Methods 
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Non-linear equations 

Linear equations 

Graph of CV system Basic Models 

Applications 

Numerical Methods Applications 

Global Lymph System  

Graph of Lymph system Models 

Enhanced  Models 

Applications 



The goal of CVSS project is to create mathematical models, 

numerical methods  and corresponding software for numerical 

simulations of cardiovascular flow in quazi 1D aproximation.  For 

this purpose cardiovascular system is associated with the graph of 

vessels (links) and tissues (nodes). Each vessel is taken as a one-

dimensional flexible pipe, which is oriented in 3-D space and 

connected either with other vessels or with tissues. Diameters of 

vessels are not constant and depend upon a great number of 

physiological and physical parameters, such as pressure, 

coefficient of flexibility, gravitation, etc. Vessel can be taken as a 

certain vessel or as a group of similar vessels. Tissues are 

characterized with their volume, their ability to produce or sorb a 

certain amount of blood, Darcy coefficient  an so on. Series of 

models of heart with different complexity are considered. Pressure, 

velocity of blood, diameter of vessel, which are estimated at any 

point of cardiovascular graph, are taken as basic functions to be 

computed as a result of numerical simulation. 



“Theory” 



Notations 

S(t,x) –cross-section area 

u(t, x) -velocity of blood flow 

p(t,x) -pessure 

Q(t,x) - blood flow (Q=Su) 

t - time 

x - local space coordinate 

 - blood density (  = const). 

x 

u(t,x) 

L 

D(t,x), S=D2/4 

Vessel 

Local 

coordinate 



Sequence of hierarchical models 

 Models of cardiovascular vessels 

 

Vessel 

 

 

 

hard pipe 

elastic pipe 

S=const 

Sconst 

S=S(p) S=S(p,u,Q, … ) 

Diameter of vessel can be constant or not constant and can 

depends upon a great number of physiological and physical 

parameters, such as pressure, coefficient of flexibility, gravitation, 

etc. This dependence we will call the “equation of state” . Walls of 

vessel is supposed to be thin. 

Q(S,p,u)=const 



Assumptions 

We assume blood to be 

uncompressible viscous liquid and 

mark out several types of blood 

flows which appear  in vascular 

modeling. 

1. In practice, velocity  u(t,x) of blood 

flow is much less then the speed 

(t,x) of propagation of small 

disturbances, u /  <<1. 

2.  Considered types of blood flow: 

• Stationary flow 

• Quasi-stationary flow. Heart output 

flow Q or pressure p are      given as 

time dependent functions (for 

example, periodical functions).  

• Quasi-stationary flow in self-

contained (conservative) system of 

vessels with given or self-regulating 

heart output flow or pressure 

functions. 

General principals of blood flow 

mathematical description in a vessel 

1. The use of conservation laws 

2. Quasi one-dimensional approach 

3. The account of viscous effects 

4. The account of external forces 

influence (acceleration, gravitation, 

vibration, etc.) 
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Vessels -arcs 

(links) of graph 

Elements of integrated model  

1. A system of vessels (cardiovascular 

system or it’s part) - vascular graph.  

2. Nodes of vascular graph 

 - areas of vessels bifurcation 

- tissues 

- organs 

- etc. 
kidney, liver, 

intestines, spleen, 

lungs, ... 

Tissues, muscles 

nodes 

•Nodes, which represent areas of vessels bifurcation, are described by  

the flow conservation law and the continuity of pressure or Bernulli integral. As a 

0D model of tissues or muscles   Darcy low can be taken. 

•Each organ must be described by specific model, in the simplest case – 0D 

model. 

•Note, that models in node of graph can be so complex as the stated problem 

requires. 

 



Elements of integrated model  

3. Heart is described by two  

or 

   four  

chambers heart model.  

Lungs 
Systemic 

circulation 

ventricle 

auricle 

“Two chambers” heart model consists from 

two cells: auricle and ventricle and is 

considered as a pump. During the systole 

blood from ventricle propagates into aorta 

according to the given Q or P function, which 

depends not only upon time, but upon stroke 

volume, current auricle and ventricle volume, 

aortic arch baroceptors and so on. During the 

diastole auricle is filling up.  

“Four chambers’ model is arranged from “two 

chambers” models with different 

characteristics. 
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 A simplest example of “two chambers” heart model  
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Mathematical model on a graph  
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According to principles formulated above, we can construct mathematical model  on a 

graph of vessels. 

NOTATIONS 

S(t,x) –cross-section area 

u(t, x) -velocity of blood flow 

p(t,x) -pressure 

t - time 

x - local space coordinate 

 - blood density (  = const). 

FT – viscous force 

 FT – external force 

2. To each node of a graph, which is “a 

bifurcation node”, two bifurcation 

equations are corresponded 

3 . To each node, which represent  tissue, 

mass conservation law and Darcy low are 

corresponded. 

1. To each arch (vessel) of a graph corresponds a “hemodynamic”  system of equations 
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i,j –numbers of converging arches in this 

node, zi – considering the direction of  local 

arch coordinates.   
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Kd- Darcy coefficient 
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Properties of hemodynamic equations 

,

,



s
с

сu
dt

dx





dtFFdu
sd

TPT )(
)(

2 


1 M
c

u

Hemodynamic system of equations has a 

hyperbolic type when equation of state 

meets the requirement  dS/dp>0. In this 

case there are  two characteristics, two 

invariants and the speed of propagation 

of small disturbances exists – “sonic 

speed” (like gas dynamics). These 

circumstances make possible to analyze  

solution of the system by means of 

analytic methods and help to construct 

numerical methods in a proper way . 

invariants 

0
dp

ds

characteristics  

sonic speed 
Due to the fact that velocity 

of blood flow actually is 

much less then the sonic 

speed, it turned out that in 

many cases we can use 

linear approach for HMD 

problems  



Numerical methods and algorithms 

3. Two different variants of finite- 

difference schemes provided for better 

reliability of numerical calculations.  
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1 1. Special format of graph description 

was constructed. It allows user to pay 

no attention to the way how solver 

treats the topology of vascular graph. 

4. The total non-linear system of 

equations is solved with help of 

iteration methods (Newton method, 

successive iterations on coefficients of 

equations). 

5. The obtained linear system of 

equations is solved mainly by direct 

methods. 

2. Conservative finite-difference scheme 

with second order of approximation on 

each arch of graph was taken as a base. 

At the same time scheme is 

homogeneous, so it does not depends 

upon concrete arch. 



Example of specific «equation of state» - Ostoumov-Beyliss effect 

p0 
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Qconst 

pmin pmax p1 

Effect of autoregulation in 

cerebral arteries 

This effect can be simulated by 

equation of state in following 

form 
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We must take into account, that different types of state equations can 

strongly influence on the type of mathematical problem 

As numerical experiments show, the effect of 

“steady blood flow” in main cerebral arteries 

is performed mostly by topology of cerebral 

vessels.  
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Analysis of stationary solutions shows, that in dependence upon the properties of 

vessel and flow parameters  effect of «locking vessel»  is possible .  

 Any subsonic solution exists only on the finite 

segment of vessels length.  
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In case of stationary  flow  the influence  of equation of state on the properties of 

solution of hemodynamic equations  is studded analytically. It is shown that in this 

case the solution at the interval satisfies the equation 
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     For linear  equation of state the solution satisfies the 

equation where М- Mach number ,  -self-similar variable/ 

As it follows from the the behavior of integral curves, 
the flow in this case cannot change its type from 

susonic to supersonic.  

Equation of state 

It is possible to draw out some conclusions, for a example: 



Adequacy of mathematical model to properties of 

cardiovascular system functioning  
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Renal outflow qkid 

CVSS software tool gives possibility to carry 

out high accuracy estimation of hydrodynamic 

blood flow features along the graph, which 

physiologically adequate to human 

cardiovascular system, allows to represent the 

main characteristics of of blood circulation 

system 

Formal mathematical  

description of blood circulation 

system to a graph 

Application of various 

models of cardiovascular 

system elements 



Linear analysis 
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     Evolution of small disturbances  of velocity and pressure from stationary 

solutions of hemodynamics is described on each arch of vascular graph by the 

system of linearized hemodynamic equations: 

    This system of equations supplied with linearized equation in internal 

nodes of graph: 

and with linearized boundary conditions in boundary nodes of graph. 

Linear approximation of hemodynamic equations (LHMD) 

Linear analysis 
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Coefficient determines amplitude of  velocity wave  

while passing from arch j to arch i  
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Each of progressing waves is described by the following formula: 

They control the evolution of  velocity and pressure waves when they pass through 

bifurcation nodes of vascular graph  and determine amplitudes of  formed waves.   

Coefficients             and                 we name “transport coefficients”. 
u
ii u

ij

Coefficient determines amplitude of   

velocity wave in arch i  

while reflecting from node 

j i 

i 
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    General solution of LHD equations on the  i-th arch of graph is a superposition 

of progressing waves of general form, which propagate in opposite directions : 

   Waves of velocity and pressure, propagating through nodes of vascular graph, 

 change their amplitudes and phases of duration 
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Types of pulse pressure and velocity wave propagation along 

artery part of vascular system 

Regime with limited 

amplitude of wave 

Regime with increasing 

amplitude of wave 
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Evolution of amplitude of pulse waves is defined by values of passing and reflecting 

coefficients in all nodes of bifurcation. In particular we can obtain matrix, which consists of 

passing and reflecting coefficients in all nodes of the graph. If absolute value of the product 

of all matrix determinants in each node is more than 1, then amplitude of pulse waves grows 

up with the time. 

Linear analysis 
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., нiA - Amplitude of  pulse wave in  i-th vessel in uninjured vascular system 

iA - Amplitude of  pulse wave i  i-th vessel in injured vascular system 

 

1 - H=0%,  2 - H=25%,  3 - H=50% 

         4 - H=75%,  5 - H=90%  

1 - R=1,  2 - R=0.5,  3 - R=0.1 

                4 - R=0.01  

     The results, obtained by means of analytic methods, allowed to establish 

relationship between degree of  symptoms of Takaysu disease (deficient pulse, 

determined, in mathematical terms, by values of transport coefficients)  and 

the degree of  arterial involvement. 

Takaysu disease 



Software 



Ability to consider personalized parameters of human 

cardiovascular system   

Development  of data base of main arteries and venous properties 

allows to study general hemodynamics regularities.    

The adaptation of models parameters to personal clinical data of 

the patient, taking into account identified pathological and 

topological features, allows to use CVSS software in practical 

means.   



CVSS Pre-processor Initial data calculations  Data base  Объемная 

скорость 

кровотока 

[3], 

мл/с 

Объемная 

скорость 

кровотока  

(таблица 1)   

мл/с 

Головной мозг 13 15 

Коронарные сосуды 4 - 

Мышцы 20 27 

Чревная область 23 22 

Почки 18 18 

Кожа и прочие органы 18 18 

Всего 96 100 

 

Initial data 
Data verification 

Method 1 

Method 2 

Linear solution Run-time control utilities 

Post-processor 

Solver 
Graphic Editor 

CVSS contains pro-processor, which allows to construct graphs of any 

complexity of the whole cardiovascular system or of any its part, as well 

as to input any system parameters.  Also CVSS contains a set of 

mathematical models of such organs as heart, kidney, tissues, etc., 

models of various regulation systems.  

Results of numerical simulation are presented numerically and  visually, in the the form of data and 

graphic, representing calculated  data  on the selected vessels or on the whole graph. Special options to 

store and analyze all numerical data are available.      

CVSS (Cardio-Vascular Simulating System ver.6.0-11.2) software (research 

version) was created to perform hemodynamics computer simulation 



Features of the 3D version software 

1) The representation of an arbitrary three-dimensional graph of 

cardiovascular system with the possibility of building it up, as well  

as narrowing. 

 

2) Move the graph in general, as well as its parts in space to account for 

the influence of gravity when changing body position. 

 

3) The use of realistic 3D models for visualization of blood vessels and 

the calculation results in the familiar visual form. 

 

4) The development of advanced tools for editing, storage and control 

significantly increased input data volume. 

5) Multi-threaded implementation of software  for parallel computation 

process and visualization of the results. 

 





ANATOMIUM 3D 

A high resolution cardiovascular 

system 3D model 

Three-dimensional CVSS graph 

The development of new 3D models 







Systemic circulation 



Model of heart 

Non-conservative model 

Graph of cardiac output approximates the experimental curve of flow or pressure 

Q 
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Regulation of the cardiac output value 

according to the value of  end diastolic 

volume VKD : Vsurg= Kf VKD 

Regulation on the duration of systole and 

diastole : Vsurg=const 

surgV  – ударный выброс 

KSKD VV ,  –volume of ventricle at the end diastole and systole 

specified parametric 

function of the 

cardiac output 

calculated current 

volume of the ventricle 

Blood flow          flowing into the auricle determined by cardiac output and 

blood flow throughout the system. This model allows to keep blood volume, 

to investigate the mechanisms of regulation. 

QV   



heart 

kidney 

brain 

legs 

intestines 

graph of systemic circulation 
Graph topology and content 

physiologically valid. 

 Parameters of 

vessels(arteries,venous, resistive 

vessels, capacitive venous, etc. ) 

and heart  are in good agreement 

with physiological data  

 All organs are presented by their 

resistance (in Darcy law)   

 In this model heart is represented 

by self-regulated two sells pump 
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Stroke volume of heart is taken  85 ml, 

ts=0.3 s, td=0.5 s. 

Systemic circulation modeling 



Systemic circulation modeling :quasi-stationary regime 

Stroke volume of heart is taken  85 ml,ts=0.3 s, td=0.5 s. The flow in cardiovascular 

system is quasi-stationary in the sense that maximum and minimum  pressure values 

does not change for a long time (at least 24 physical hours), and is quasi-periodical. The 

characteristics of blood flow is adequate to physiological one. 

Volume of ventricle Pressure in aorta 

If stroke volume decreases up to 70 ml, the flow is still quasi-stationary and quasi-

periodical, but  maximum pressure in aorta falls from 118 mmHg up to 104 mmHg. This 

illustrates how heart parameters influence on hemodynamics in a whole. 



Renal pressure 

Volume of CVS 

Kidney 

<p> 

)exp(
statstatkid

ppqq 

Renal outflow qkid 

The simplest kidney model look like that : if 

average renal pressure <p> lager then some pstat, 

then renal outflow exponentially grows  

Numerical simulations show, that this model is 

good to explain and to study renal regulating 

factor. Really, if, for any reason, renal pressure 

increases, then renal flow immediately 

exponentially grows,  volume of CVS decreases 

and renal pressure decreases strongly. Then, 

renal pressure goes down simultaneously with 

renal flow and CVS volume, and, exponentially, 

hemodynamics flow turns to its normal state.  

Renal normal outflow 

Renal outflow 

Systemic circulation modeling: renal regulating factor 



The change of heart’s 

functioning mode  

The change of tone of  vessels 

The change in tissue filling 

A pressure 

change in the 

system and the 

aorta 

Baroreceptors 

Modeling the baroreceptor neurogenic regulation 



Increase of 
blood pressure 

Increase of 
impulses from 
baroreceptors 

Reaction 
of  CNS 

•The decrease of vascular 
tone. 
•The increase in fullness of 
the tissues by the blood. 
•The decrease in the 
frequency of contractions of 
the heart. 
 

The mechanism of neuroregulation is configured to keep a specific value of pressure 
                        
               in a vessel containing baroreceptors that respond to the deviation                    , 
 
                                                  ,  где                                        – the average pressure in the 
 
 vessel. 

barp
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The decrease of blood pressure: the reverse process  

Modeling the baroreceptor neurogenic regulation 

Schematic diagram of neurogenic regulation 

Model of changes of vascular tone 

Площадь сечения сосуда
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The pressure increase leads to an 

increase in cross-sectional area and 

reduced stiffness of  vessels wall 
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The model of change of fullness of the capillaries (tissues) 

Increase (decrease) in pressure leads to an increase (decrease) in the 

number of capillaries in the tissues filled with blood. In the framework of 0D 

models that can be interpreted as the increase (decrease) of filtration 

coefficient in Darcy's law:  
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Model of contraction  frequency changes in heart 
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Increase (decrease) in pressure leads to an increase (decrease) of duration 

of the cardiac cycle tprd . 
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Modeling the baroreceptor neurogenic regulation 



Давление в аорте

50

90

130

170

210

250

10.45 13.65 16.85 20.05 23.25

время, с

P, мм рт.ст.

Расчет А Расчет С

Среднее давление в аорте

80
90
100
110
120
130
140
150

10,45 13,65 16,85 20,05 23,25 26,45 29,65 32,85

время, с

P, мм рт.ст.

Расчет А' Расчет В' Расчет С'

Среднее давление на ткани руки

30

35

40

45

50

55

10,45 13,65 16,85 20,05 23,25 26,45 29,65 32,85

время, с

P, мм рт.ст.

Расчет А' Расчет В' Расчет С'

After a shot increase of blood 

pressure neurogenic 

regulation leads to return 

pressure to normal. Average 

pressure in the aorta and in 

the arteries of the hand 

reduced . 

The calculation A – the flow without regulation, B – flow with partial control, C – flow with 

full regulation 

Modeling the baroreceptor neurogenic regulation 

Pressure in aorta 

Average pressure in aorta Average pressure in arm tissue 



Суммарный объем крови в сосудах

 головного мозга 

43,3
43,7
44,1
44,5
44,9
45,3

40 40,8 41,6 42,4 43,2 44 время, с

V, мл

Объем крови в сосудах артериальной части 

головного мозга выше Виллизиева круга 

16,2

16,3

16,4

16,5

40 40,8 41,6 42,4 43,2 44 время, с

V, мл

Объем крови в сосудах венозной части

 головного мозга

26,6

27,1

27,6

28,1

28,6

40 40,8 41,6 42,4 43,2 44 время, с

V, мл

Volume of cerebral blood upon time  

arterial venous 

Kelly’s model 

Total volume 

What causes the motion of spinal fluid ? 

It is supposed, that the pulsating cerebral  blood flow in area, 

restricted by solid cranial bones, causes pulsating lymph flow. 

Experiment: appr. 1.0 ml per 

cardiac cycle 

Numerical modeling: appr. 1.48 ml 

per cardiac cycle 

Cerebrospinal fluid flow 



Артер. и вен. часть без Вил. 

круга (объем)

42,5

42,9

43,3

43,7

44,1

44,5

40 40,8 41,6 42,4 43,2 44 44,8

Поток, ВСА3-4 (мл/мин)
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Поток, Р1 (мл/мин) 

200
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40 40,8 41,6 42,4 43,2 44

Analysis of changes of blood volume in the venous and 

arterial parts of the brain for assessment of CSF 

dynamics in brain according to model of Kelly. 

 

The changes in blood volume in the vessels above 

circle of Willis in calculations is 1.8 ml for one period of 

the heartbeat, which is consistent with experimental 

data according to which between the head and the 

spinal cord during the period of contraction of the heart 

circulates approximately 1 ml of cerebrospinal fluid. 

Graph of cerebral vessels + 

elements of the systemic 

circulation :  

 
- two-chamber heart - aortic 

arch - arteries, veins, tissues 

of the hands - point 

resistance and generalized 

blood vessels with relevant 

volumes and resistive 

properties 

The model is closed 

The interaction of pressure in the 

aorta and in the brain 

1 

2 

Cerebrospinal fluid flow 



Multiscale Modeling 

Solution of 2D or 3D Navier-Stokes equations in selected vessels in order 

to investigate the flow in area of vessels wall singularities.   

Such approach allows to analyze  the 

mutual influence of global and local 

hemodynamics. 

This is actual when blood flow studed in 

cases of  stenosis,  thrombus, etc.  

 

While global hemodynamics is 

computed in quazi one-dimensional 

case and is tuned on possibilities of PC, 

local 3D flow calculations may need 

parallel HPC abilities.  



Gravitation 



Gravitational influence 

g 

The performed methodic allows to 

investigate the influence of gravitational 

forces on human hemodynamics. 

Numerical simulation on a full graph 

(systemic circulation + cerebral 

circulation) helps to investigate changes 

in hemodynamics under growing gravity  

Volume of blood in brains  strongly falls 

under influence of gravitation force 

Blood supply of brain sections also 

decreases 

Theoretical studies of viscous fluid (blood) 

flow in the net of elastic vessels allow to  

understand, what are the problems which 

must be solved in order to carry out 

modeling of gravitational influence. 



Quasi-stationary model of hemodynamics taking into account 

gravitational acceleration 

 First step:assumption: S=S(x) – vessels are  

hard pipes, so HDM equations  look like: 
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Here:  

q – output heart flow, 

P* - pressure in auricle, 

- arterial part, 

- venous part, 

- ventricle 

- auricle 

TB, TH – effective (integrated) 

tissues 

g 



Results of analytical investigation 

 Hard vessels: 

- in this case we can obtain explicit 

formula for flows: 

(here L – corresponding total 

resistance) 

 

- The pressure plot  in  

vessels depending on g/gH,  

gH  10 m/s2 - acceleration  

of gravity looks like that. 

 

Note, that pressure in  

vessels (5,8) and (1,2)  

practically does not vary while  

gravity grows. 
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 Influence of flexibility (vessels slightly elastic): 

 

 - flow change slightly in the comparison with the case of “hard” pipe. 

 

 - appearance of supersonic flows near nodes is possible. 

 

1 

2 



3 

 Influence of vessels equation of state 

- appearance of supersonic flows strongly depends on the type of state equation 

S 

P Stationary points 

- location of 

“stationary” point 

also influence on type 

of flow 

S 

P 

High possibility of supersonic flow Low possibility of supersonic flow 

4 

 Influence of aurical pressure P* . 

 - when P* vary then the picture of blood flow changes radically 

 - when P* increases then pressure in aorta increases strongly. 

5 

 Numerical modeling on the whole CVS graph proves obtained analytical results 



middle cerebral artery  

femoral artery  

Gravitational influence 



Cerebral Hemodynamic 



Nodes 

number 

Values of the 
matrix 

determinants 

31 1.002 

54 1.002 

57 1.002 

28 1.005 

30 1.005 

23 1.001 

9 1.01 

52 1.001 

 

A hemodynamic factor of arterial vessel aneurism development 

With the help of developed technique it is possible to construct a matrix of  

passing and reflection coeffitients in the nodes of vascular graph. An evident 

correlation between typical locations of artery aneursm of cerebral arteries 

(Willis circle), of thoracic aorta  and certain numerical values of corresponding 

determinants of the matrix was noted. 

Willis 

circle 

thoracic 

aorta 

Typical location of artery 

aneurism  



Model graph of brain arteries  View of brain arteries 

Cerebral hemodynamics modeling 

The first step in hemodynamics modeling is the construction of certain vascular graph. 

Let us consider the graph of main brain arteries up to the third order of bifurcation.  

Brain tissues Collaterals 

Heart 

Arms 

“Point” model 

of the rest part 

of CVS   

Circle of Willis 

According to the task of 

cerebral hemodynamics  

modeling the complexity of vascular graph can be  

different. Presented graph includes heart, arch of  

aorta, scheme of arms,vertebral arteries, carotids,  

Willis circle, arteries P1,P2,P3, A1,A2,A3,M1,M2,M3, 

collaterals and some others. Venous return presented 

schematically. The influence of the rest CVS described by  

“point model”. 



Patient P. had stenos 70%on right internal carotid artery and stenos 90% on left carotid 

artery. Parameters of his brain arteries (length, diameters, elastic properties, etc.) and 

heart activity were taken from clinical study. During the operation treating some cross-

clamping (occlusions)  of arteries in certain points (points 2-9 on the picture) were 

needed. The question : What will than happen with blood supply of different parts of 

brain?   

Results of mathematical simulation 

It appears that in 

all cases blood 

supply of brain 

does not change 

dramatically - 

deficit is not more 

then 20%  
Blud supplay of brain tissues

0

0,5
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First column is the flow without occlusions. 
Why is that ? ? 

The deficiency is made up by 

collateral circulation (not by the 

circle of Willis in this case) 
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Blood flows in collaterals 

Blood flows strongly change after cross-

clamping in comparison with normal state  

Points of occlusion 

Cerebral hemodynamics modeling 



Mass transfer 



Mass transfer  

Thought the hemodynamic parameters are known, possibility to calculate transfer of 

substance blood appears. Let us assume, that                   - mass concentration of l -th 

substance in k- th vessel, then mass transfer along the vessels net is described by 

system of equations 
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Propagation of the substance through the vessels 



Propagation of the substance through the vessels 



Propagation of the substance through the vessels 



Mass transfer (numerical calculations)  

Propagation of concentration wave along circled rout in systemic circulation’s vessels   

With the help of mass transfer computer modeling a lot of practical problems can 

be studded 

 

Oxygen supply and  carbon gas removal 

Drug propagation and their influence on blood flow and organs 

Distribution of hormones 

Humoral regulating mechanisms 

Insulin and glucose interference  

 etc. 

 

 



For the simulation of the spatial-time dependant dynamics of glucose 

and insulin we need:  

 

• To be able to estimate (model) blood flow in the closed CVS ( ! ),  

• To carry out computation of the process in network vessels for a 

long time (up to 16-20 hours).  

• To be able to count (simulate) the transfer of at least of two 

substances in this system. The algorithm should be conservative ( ! ).  

 

• To formalize (to described in mathematical terms) the processes of 

glucose incom and excretion; to formalize introduction of insulin and 

excretion of insulin, depending on the level of sugar.  

 

• To determine the parameters of the model ( ! ).  

 

Modeling insulin and glucose dynamics. 



On the base of CVSS quasi one- 

dimensional methodic  

 
Main organs and tissues are taken 

into account (the set may be expanded) 

 

Glucose and insulin sources can be 

placed anywhere in the system in order 

to simulate normal and bolus insulin 

and glucose income. 

 

Production and interference of both 

substances can be configured to 

represent normal or pathological 

glucose-insulin dynamics. 

 

Graph of vessels can be designed to 

suit  ordered physiological accuracy, 

thus allowing to research in details 

glucose and insulin redistribution, 

specific to the considered diabetes 

mellitus.  

Modeling insulin and glucose dynamics. 

Modeling of insulin and glucose distribution is based on the high accuracy algorithm 

of their transfer with blood flow, income and  elimination.  

On the base of endocrinological tests 

and clamp tests it is possible to tune 

personal parameters of the model 

   m g/h , mUN/h , g/h coeff 

Stomach   3   1.6   36,3    —     —   

Spleen  4  15.9   837    —     —   

Stomach ВB   5  23.5   413   0.49   0.02  

Leg rt 12   7.2   131   0.5  0.07  

Leg lt 13   7.2   131   0.5   0.07  

Liver arter.  24   15   264    —     —   

Liver vein.  25  48.4   1823    —     —   

Liver port.   26   69   2088   1  0.0155  

Arms (lf. rt)   34   4.3   81   0.17   0.04  

Brain  45   7.4   130   1.46   0.2  

Brain  46   7.4   130   1.46   0.2  

Brain  48   4.7   77   1.1   0.27  

Kidney rt.  55   23.3   119    —     —   

Kidney lt.  58   23.5   414   0.2   0.01  

Pancrea  85   7.4   838   0.2   0.028  



The effect of “delay” in the 
propagation of glucose.  

Average level of glucose increase  

Average level of glucose decrease 

Map of glucose and insulin 

rate shows the distribution 

of those substances in 

every point of vessel at any 

time 

Glucose in femoral artery and vein 

It appears, that concentration of glucose stays on 

the high level for significant  time in femoral veins 

(and in some other veins) even when the level of 

glucose in check-points (arms and abdominal 

wall) is satisfactory.  

Modeling insulin and glucose dynamics. 

Glucose burden  



Main elements : 

• precise insulin pump 

• continues real-time sensor of glucose level 

• real-time  calculation of  bolus (the amount of insulin which must be  delivered to 

patient) 

The main attention is paid to the program , which is the key factor. It is 

necessary to develop a precise algorithm which calculates  the right 

amount of insulin at the right time. 

The artificial pancreas is a developing technology which is aimed  to provide people with 

diabetes automatically control of blood glucose level  and to provide insulin replacement. 

Current project refers to the medical equipment approach: 

- using of  insulin pump under closed loop control  

- using real-time data from a continuous blood glucose sensor 

Analysis  

and 

calculation 

of dose 

Pump  

Patient 

 

Control Insulin injection  

Sensor 

Artificial pancreas 



To develop an intelligent and predictive algorithm for computing real-time  

insulin injection control it  is necessary : 

To process a huge 

amount of 

accumulated 

physiological data 

To determine profiles of required 

bolus according to various 

peculiarities of the patient 

under different glucose burden  

To study qualitative and quantitative 

characteristics of spatial distribution of insulin 

and glucose in vessels net 

To specify characteristic times and rates of 

circulating insulin in system of blood 

vessels in dependence upon the point  of its 

injection 

To personalize data 

(endocrinological tests) 

ETC. 

Development of computer simulation and mathematical models of insulin 

production, intake of glucose and regulation of glicemia can  significantly ease the  

construction of control utility. 

 

Artificial pancreas 



Lymph 

 



Lymphatic system modeling is very important task 

because: 

1. big cells and molecules as well as infections 

are distributed through out the organism by the 

lymphatic system; 

2. it compliments circulatory system: about 10% of 

blood transforms to lymph and goes to the 

lymphatic system 

Lymphatic system connected to the cardio-

vascular one through the interstitial space 

We want to create a model for lymph flow 

though the whole lymphatic system on the 

base of the quazi-onedimensional approach 

Lymphatic system 



Lymphatic system, a subsystem of the cardiovascular system, consists of 

a network of vessels, tissues, and organs (the same as CV).  

Lymphatic system and quazi 1D approach 

The topology of  lymphatic system is similar to the 

topology of CV system. 

 Lymph flow can be described basically  with the same 

hemodynamic equations.  

The same, as in case of CV, algorithms used to describe net 

and to solve the problem numerically. 

More over, both nets (CV+L systems) we consider as 

uniform system from algorithmic point of view. 

Important : 

Modeling of mass  transfer along lymphatic net. 

Connection with CV system via tissues. 

 

 



Lymphatic system 

New features (in comparison with CV) 

Lymph – contains a lot of  components 

Lymphatic vessels – specific equation of state, low internal gradient of 

pressure, valves 

New organs – new complex physiological and biochemical models of : 

  
  Lymph nodes 

  Spleen 

 Thymus 

The main hydrodynamic problem in this case is to investigate why and 

how lymph moves. 

On the first step of research the aim is to verify phisiological 

hypotheses that lymph flow is caused by: 

 

1) Pressure drop along the system 2)Muscle pump (due to 

valves)  
The model includes: 

• a graph with arcs representing lymphatic vessels and lymph nodes and 
nodes representing bifurcations and boundaries; 

• models for the lymphatic vessels and lymph nodes 



Lymphatic system: 
• is not closed; 

• is not connected to the heart directly; 

• delivers lymph from the interstitial 
fluid to the upper  vena cava 
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• enters into the lymphatic system 
through the initial lymphatics; 

• flows in one direction  (to the 
upper vena cava) 

Lymph: 

Elements of the lymphatic system: 

1. trunks and ducts; 

2. collectors; 

3. postcapillaries and 

initial lymphatics; 

4. lymph nodes 

In all of the groups processes are multiscale in velocity and sizes  

initial lymphatic 

lymph 

node 

thoracic duct 

(green) 

collector 

Lymphatic system 



First group of the vessels 

Physiology 

includes trunks and ducts: 

• the diameters about 1.5 – 2 mm; 

• rare valves – can be about 5 cm 
between adjoint ones; 

• active contractions of 
lymphangions; 

• velocity about 0.5 – 1 cm/s 

Mathematics 

• basic equations: 

 

 

 

 

 

 
 
S(x,t) – cross-section area; 
u(x,t) – lymph velocity; 
p(x,t) – pressure; 
ρ – density, ν – viscosity; 
x – axial coordinate, t – time; 

• in case of contractions: 
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Second group of the vessels 

Physiology 

includes collectors: 

• the diameters from 3 – 5 μm to 1 – 
2 mm; 

• frequent valves – it can be about 2 
mm between adjoint valves with 
the diameter of the vessel is about 
2 mm; 

• active contractions of the 
lymphangions 

Mathematics 
• basic equations with resisting force: 

 

 

 

 

 

 

 

 

• example of      : 

• contractions: 
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Third group of the vessels 
Physiology 

includes initial lymphatics: 

• the diameters about 20 – 200 
μm; 

• no valves 

 

Mathematics 

• binary tree net -> an effective vessel 
with conservation of flux, pressure 
gradient and lateral area 
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The lymphatic system graph 74 

To create the graph for the 
lymphatic system follow steps had 
been done: 

1. the set of vessels and nodes 
sufficient for lymphatic 
system description had been 
determined; 

2. the vessels and nodes had 
been topologically attached 
to the graph of the cardio-
vascular system. 

 

The lymphatic graph has 520 arcs 
and 455 nodes.  

163 arcs of the graph represent 
lymph nodes 

 





Example of some initial parameters 

Group Type ID Name d (cm) Sinit (cm^2) 

3 1410 Effective vessels d0 = 0.02 0.00024 

2 1400 Collectors - 0.009 

1 1401 Cisterna chyli 0.4 0.1257 

1 1402 Lumbar trunks 0.15 0.0177 

1 1403 Thoracic duct 0.2 0.0314 

1 1404 Jugular trunks 0.1 0.0079 

1 1405 Right lymphatic duct 0.2 0.0314 

1 1406 Bronchomediastinal trunks 0.1 0.0079 

1 1407 Subclavian trunks 0.1 0.0079 

- all Lymph nodes 0.2 0.0314 



Calculations 77 

Calculations were performed to determine: 

1. if there is any flux in the model under 

given pressure gradient; 

2. if there can be reached presumable 

flux (0.023 ml/s – about 2 l/day) 

Output flux = 0.0483 ml/s Output flux = 0.0288 ml/s  

p = 5 mm Hg 

(initial lymphatics) 

p = 0 mm Hg 

(upper vena cava) 
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Calculations had been performed  in the CVSS program 

until a steady flow had been established 

 



Track 1: right palm to the right venous angle 

№ Body Region 
Leng 
(cm) 

Sinit 
(cm^2) 

p  

(mm Hg) 

|u| 
(cm/s) 

Group 
Type 

464 Right palm 25.329 0.00018 5.000000 0.045779 3 

463 
Cubital lymph 

node 
0.200 0.03140 0.083414 0.000293 4 

466 Right forehand 27.358 0.00900 0.083412 0.000700 2 

517 
Central axillary 

lymph node 
0.200 0.03140 0.081631 0.003000 4 

493 
Right shoulder 

area 
3.287 0.00900 0.081615 0.010468 2 

489 
Apical axillary 
lymph node 

0.200 0.03140 0.078414 0.024052 4 

495 
Right subclavian 

area 
1.204 0.00900 0.078285 0.083915 2 

483 
Right subclavian 

trunk 
5.768 0.00790 0.068880 0.095632 1 

474 
Right lymphatic 

duct 
1.349 0.03140 0.010264 0.284443 1 

- 
Right venous 

angle 
- - 0.000000 0.284551 - 



Track 2: back of the head (left) to the left venous angle 

№ 
Body 

Region 
Leng(cm) 

Sinit 
(cm^2) 

p (mm Hg) |u| (cm/s) 
Group 
Type 

349 
Back of the 
head (left) 

2.19317 0.00018 5.00000000 0.51547460 3 

347 
Cervical 

lymph node 
0.20000 0.03140 0.20860548 0.00327959 4 

348 Head (left) 16.98530 0.00900 0.20858807 0.01144214 2 

457 
Lateral deep 

cervical 
lymph node 

0.20000 0.03140 0.19057910 0.00943150 4 

458 Neck (left) 3.44384 0.00900 0.19052900 0.03290553 2 

480 Neck (left) 0.40000 0.00900 0.18002417 0.10038180 2 

479 
Left jugular 

trunk 
2.67208 0.00790 0.17630153 0.36601905 1 

485 
Arc thoracic 

duct 
1.28063 0.03140 0.07260521 0.69503687 1 

487 
Arc thoracic 

duct 
1.87083 0.03140 0.04884073 0.73413698 1 

475 
Arc thoracic 

duct 
0.61644 0.03140 0.01212108 0.73513374 1 

- 
Left venous 

angle 
- - 0.00000000 0.73546245 - 



Calculations under gravity 



Valves Yes/No without gravity 

• Is there are any influence of the presence of valves in vessels 
of first type on the lymph flow without gravity ; 
• 2 models (with and without valves) with the same topology  
• Calculations were performed  in the CVSS program until a 
steady flow was reached. 



Valves Yes/No with gravity 

• Is there are any influence of the presence of valves in vessels 
of first type on the lymph flow with gravity 1g ; 
• 2 models (with and without valves) with the same topology  
• Calculations were performed  in the CVSS program until a 
steady flow was reached. 



Valves  in vessels of the 
first type do not  
compensate the influence 
of gravitation  
 
Perhaps the situation will 
change after accounting 
valves in vessels of the 
second type 
 
 

Expected 

flow 
Calculated 

flow 



Interstitial 



Human Anatomy & Physiology . Elaine N. 

Marieb and K.Hoehn, published by Pearson 
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C(x,t) – concentration of 

substance in vessel 

u(x,r,t) – concentration of 

substance in interstitial  

Exchange of 1D flow in vessel with interstitial  (+ diffusion and sorption in tissue). 



Exchange with interstitial. 

u(x,r,t) – mass  concentration 

in interstitial fluid, 

C(x,r,t) - mass  concentration 

in blood 

F – sorption flow, 

F1-  flow from/to the vessel. 

F1=Fd +Fp, 

Fd – diffusion flow, 

Fp – “pressure” flow 

Fd Fp 

Fp 

P 

x 
Fv - Pressure in vessel 

Ft  - Pressure in tissue 

ΔP=Fv-Ft 
 

 

Ft 

Fv 

In general 

Fd= λ(C-u)κ,     Fp=σ(u,c)ΔP 

blood flow 



Form of «impenetrable» area 

Form of «signal» 

Exchange with interstitial. 



Exchange with interstitial. 



Exchange with interstitial. 



Exchange with interstitial. 



Exchange with interstitial. 



Exchange with interstitial. 



 
• 3D topological 

correspondence 

• quazi 1D hemodynamic 

equations for liquid flow in 

big vessels 

• mixed Darcy-diffusion 

models for tissue and areas 

of conjuction 

• specific models for organs 

• common simultaneous 

calculation 

Conjunction of cardiovascular and lympatic 

system: 
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